رده ی گروه های حافظ خود ریختی های p- گروه های متناهی

thesis
abstract

چکیده مجموعه ی تمام خودریختی های حافظ رده از گروه g را با نماد نشان می دهیم. در این تحقیق تمام گروه های متناهی g که برای آن ها بیشترین مقدار خود را اختیار می کند، دسته بندی می کنیم. اگر g یک گروه نابدیهی از مرتبه ی باشد آن گاه ثابت می کنیم : (1) همچنین تمام گروه های متناهی g به قسمی که تساوی در رابطه ی (1) برقرار باشد را دسته بندی می کنیم. در واقع نشان می دهیم تساوی در رابطه ی (1) برقرار است اگر و تنها اگر یکی از موارد زیر اتفاق بیفتد: • g یک گروه فوق ویژه از مرتبه ی باشد. • g یک گروه از رده ی پوچ توانی 3 و مرتبه ی باشد. • g یک گروه ویزه ی کمینا ایزوکلینیک با گروه w باشد و . • g گروهی از مرتبه ی و ایزوکلینیک با گروه باشد. کلمات کلیدی: خودریختی حافظ رده، گروه آبلی مقدماتی، گروه ویژه، گروه فوق ویژه، گروه کمینا، گروه تقریبا کمینا و ایزوکلینیسم.

First 15 pages

Signup for downloading 15 first pages

Already have an account?login

similar resources

گروه خود ریختی های حاصل ضرب مستقیم گروه های متناهی

هدف اصلی این پایان نامه بررسی گروه خودریختی های گروه هایی مانند gاست که به صورت حاصل ضرب مستقیم دو گروه متناهی مانند h و k هستند با این شرط که h و k عامل مستقیم مشترک نداشته باشند. در این رساله ابتدا مرتبه ی (aut(g را محاسبه نموده و سپس یک ساختار کلی برای (aut(g ارائه می دهیم. پس از آن در بخشی دیگر به بررسی آبلی بودن ( aut(gمی پردازیم و سپس با ارائه ی مثال هایی مطالب فوق را مورد مطالعه قرار می ...

توان های سرشت های تحویل ناپذیر گروه های متناهی

فرض کنیم x یک سرشت تحویل ناپذیر از یک گروه متناهی ناآبلی G باشد. برای اعداد صحیح نا منفی n و m با شرط m + n > 0، در این مقاله حالتی که تمام موسس های تحویل ناپذیر سرشت xn xm سرشت های خطی G هستند مورد بحث قرار می گیرد. در مقاله ای ریاضی دان معروف به نام مان ثابت کرد که اگر G یک گروه متناهی و x یک سرشت تحویل ناپذیر G باشد و تمام موسس های تحویل ناپزیر x2 خطی باشند، آن گاه (Ǵ≤Z(G و لذا G گروهی پوچ ت...

full text

برابری گروه خودریختی های مرکزی با گروه خودریختی های حافظ رده تزویج روی p-گروه های متناهی

فرض کنید ‎‎‎g‎‎‎ یک گروه باشد. گروه همه خودریختی های ‎‎g‎‎ را با aut(g)‎ نشان می دهیم. خودریختی ‎‎? از aut(g)‎ را یک خودریختی مرکزی گوییم در صورتی که برای هر‎ ، x ? g x^{-1}?(x) ? z(g) ‎. مجموعه ی همه خودریختی های مرکزی ‎‎ gکه آن را با ‎ autcent(g) نشان می دهیم یک زیرگروه نرمال aut(g)‎ است‎ .‎‎ ‎خودریختی ?‎ از aut(g)‎ را یک خودریختی حافظ رده تزویج گوییم در صورتی که برای هر ?(g) ? g^{g} ،g ? g ...

15 صفحه اول

خودریختی رده ای پایا p-گروه های متناهی

خودریختی ? از گروه g را خودریختی رده ای پایا می نامیم، هرگاه برای هرg ?x، داشته باشیم xg?(x)?، که در آن xg رده مزدوجی x در g است. مجموعه تمام خودریختی های رده ای پایا g را با autc(g) نمایش می دهیم. در این پایان نامه، p-گروه های متناهی مانند g را که در آن ها |autc(g)| به بیشترین مقدار خود می رسد را بررسی می کنیم. برای این منظور ابتدا نشان می دهیم که برای هر p-گروه غیربدیهی g از مرتبه p^n رابطه ی...

15 صفحه اول

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه کاشان

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023